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SUMMARY 

The spurious pressures and ostensibly acceptable velocities which sometimes result from certain FEM 
approximate solutions of the incompressible Navier-Stokes equations are explained in detail. The 
concept of pressure modes, physical and spurious, pure and impure, is introduced and their effects on 
discretized solutions is analysed, in the context of both mixed interpolation and penalty approaches. 
Pressure filtering schemes, which are capable of recovering useful pressures from otherwise polluted 
numerical results, are developed for two particular elements in two-dimensions and one element in 
three-dimensions. Implications regarding the effect of spurious pressure modes on accuracy and 
ultimate convergence with mesh refinement are discussed and a list of unanswered questions presented. 
Sufficient numerical examples are discussed to corroborate the theory presented herein. 
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I. INTRODUCTION 

Discretized approximations to the incompressible Navier-Stokes equations, in the primitive 
variable (velocity-pressure) formulation, especially when generated via the Galerkin Finite 
Element Method (GFEM), have been plagued with confusion regarding the ‘appropriate’ 
workable combinations of velocity and pressure approximations. Early on it was discovered 
by Haod and Taylor’,’ that equal-order interpolation on conforming quadrilateral elements, 
wherein the same basis functions are used for representing velocity and pressure, causes 
difficulty in the pressure solution. They obtained better results when using mixed interpola- 
tion (the basis functions for pressure were one order lower than those for velocity), and 
suggested an explanation in the form of ‘balancing residuals’ from momentum and continuity 
equations. Their explanation, although intuitively appealing, was judged inadequate by 
Olson and Tuann3 who explained the results in terms of the eigenvalues of a single element 
(equal interpolation always generated one or more eigenvectors which contained only 
pressure and corresponded to zero eigenvalues; they claimed that these were spurious and 
were the cause of the failure). While a combination of the above two explanations appears to 
have satisfied most researchers (at least in practice, since essentially everyone (?) now 
effectively uses mixed interpolation), there are lingering doubts in the minds of some (e.g. 
Richards4) that the complete theoretical explanation is contained in these analyses. As shown 
herein, these doubts are well justified, even though the work of Olson and Tuann was more 
or less in the right direction. 

Even when mixed interpolation is employed, however, there are cases where numerical 
difficulties are encountered. In particular, the simplest possible approximation employs 
piecewise linear approximation for velocity (bilinear on quadrilaterals) and piecewise con- 
stant approximation for pressure. This element has been found to work well in some cases 
and poorly in others; in solid mechanics, see Argyris et al.’ and Nagtegaal et al.? and in fluid 
mechanics, see Fabayo,” Huyakorn et al.? Hughes et al.: and Lee et al.1° For certain 
combinations of boundary conditions and element distributions over a domain, the solutions 
display acceptable velocities but totally spurious pressures; the pressures are afflicted with 
the ‘checkerboard syndrome,’ wherein they display oscillations which are frequently of one 
sign on all ‘black squares and of the opposite sign on all ‘red’ squares. These pressure 
patterns have also been encountered using certain finite difference discretization techniques 
(Fortin,” Pracht and Brackbilll’) so that the affliction is not intrinsic to FEM formulations; 
for example, Chorin13 has encountered four spurious pressure patterns when solving a 
consistently centred difference approximation to the Navier-Stokes equations in two- 
dimensions (eight in 3-D). Finally, similar behaviour can also occur using higher-order 
elements; e.g. the quadrilateral element with biquadratic velocity (9-node) and bilinear 
pressure with nodes at the 2 x 2  Gauss points can display a checkerboard syndrome. 

This spurious pressure problem is the principal item addressed in this paper, which is a 
detailed expansion of the summary version presented earlier;14 in particular, we have 
extensively studied this ‘problem’ on 2-D grids composed of certain quadrilateral finite 
elements. The results and techniques we shall present also apply in 3-D (at least for the 
simplest elements, which exhibit many pressure modes) and for related 2-D and 3-D finite 
difference discretizations (Cald~eli~’), as well as for the related incompressible computations 
in solid mechanics. The techniques developed herein also shed additional light on the 
question of why equal interpolation fails. 

In the remainder of this paper, we will define and characterize these ‘zero energy pressure 
modes,’ both theoretically and numerically, and, for two particular elements, present simple 
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and effective methods for extracting good physical pressures from the polluted numerical 
results. Additionally, we will point out some problems associated with particular element 
distributions and boundary conditions which may bear on the theoretical proof of con- 
vergence for certain elements. 

11. THE CONTINUUM EQUATIONS AND THEIR FEM DISCRETIZATION 

The setting for our discussion will be the steady Stokes equations (or equivalently, the 
equations of incompressible isotropic linear elasticity): 

v . 1 = 0  
V.u=O 

where = -paij + Sij is the symmetric stress tensor, 

a 4  auj s.. = p -+- ’ (a? a&) 
u = (u, u )  is the velocity, p is the pressure, and p is the (constant) viscosity of the fluid. Since 
the pressure modes arise from the discretization of Vp and V . u, these simplest equations 
suffice and the results immediately generalize to unsteady, nonlinear (viscous or inviscid), 
and nonisothermal (Boussinesq) flows; and our numerical results substantiate this. 

In the related penalty method,”.s6 the solenoidal constraint on the velocity field is slightly 
weakened, to p = -AV . u, where A is the penalty parameter. The results from the penalty 
approximation will be close to those using (lb) if the following inequalities are satisfied: 
e << p/A << 1, where e is the ‘unit roundoff level’ of the computer; for example, on our 
CDC-7600, e == and the penalty method ‘works well’ for - lo5 < A/p C - 10”. With 
perfect arithmetic ( e  = 0), the penalty results would converge to those from (1) as A -+ a. For 
large but finite A, the results should typically differ by 0(1/A); actually, we usually observe 6 
digits of agreement for lo6 5 A 5 lo8. Since the pressures obtained from the penalty method 
can also be plagued with the checkerboard syndrome, it is appropriate to consider it also. 

The GFEM discretized approximation is applied to the following weak form of (l), with 
some initial notational laxity, which we quickly rectify in (4): 

over the domain 0 with boundary 30, where 7 . n  is the surface traction, 4i represents the 
‘appropriate’ basis function for velocity, 16;- is any basis function for pressure (the minus sign 
is required to retain symmetry), and n is the outward pointing unit normal vector. The 
following approximations are now applied, using the appropriate piecewise polynomial basis 
functions: 

k = l  
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where there are No velocity nodes and M pressure 'nodes' in the discretized approximation. 
Inserting (3) into (2) leads to the G E M  equations, written in compact form as: 

Ku+CP=f  

CTU = g 

where U = (ul, uz, . . . , uN,, ul, uz, . . . , vNJT, P = (PI, Pz, . . . , PM)T. 
This symmetric algebraic system represents a condensed system in which iVl and N2 are, 

respectively, the number of 'free' u and v degrees of freedom. Consequently, the vectors f 
and g reflect the effect of imposed boundary conditions; f could represent prescribed 
boundary forces (not  pressure^'^) or prescribed velocities but g corresponds only to pre- 
scribed velocities. Also, 

is a positive-definite, symmetric matrix, 

and the contribution, if any, to f from prescribed surface forces is 

where q,$ are the x- and y-components of n. 
In the penalty approximation, the discretized form of the continuity equation (4b) becomes 

ACW - M P  = Ag, (44 

where Mii =so Combining (4a) and (4c) leads to the computational form of the penalty 
approximation, 

[I(+ A(CM-*CT)]U = f +  hM-lg, 
which is a symmetric linear system in velocity only (pressure can be recovered via (4c) 
applied as a post-processor). The consistent penalty matrix, B = CMw1CT, (see Appendix I) 
as well as the A-portion of the right hand side, is simple to form only when discontinuous 
(C-') pressure approximation is employed, in which case it can be formed element-wise. 
Under certain conditions, a further economy accrues when employing the Lagrange family of 
approximations for velocity and (C-') pressure in that B can be efficiently formed via 
reduced quadrature methods, using the 'continuum' approach (p = -hV . a is inserted into 
(la) and (2a) and the equivalence theorem of Malkus and Hughes,'* in which the {Gi} basis 
need never be explicitly introduced. The use of reduced quadrature, however, is generally 
not recommended in the case of higher-order isoparametric elements with curued sides (e.g. 
biquadratic velocity) since the accuracy of the penalty method (relative to mixed interpola- 
tion) is then only attained via actual construction of the B matrix." A final comment on 
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reduced quadrature: if full quadrature is employed on the penalty term, the result is 
equivalent to using equal-order interpolation for velocity and pressure; this form of equal- 
order interpolation (using C" velocity and C-l pressure) is particularly untenable since it 
generates more continuity constraints than there are velocities to satisfy them. 

111. THE BILINEAR VELOCITY-PIECEWISE CONSTANT PRESSURE ELEMENT 

Specializing now to the bilinear element, where <bi is piecewise bilinear and t,bi is piecewise 
constant (unity on element i and zero on all other elements), we write the element matrix CZ, 
for the general isoparametric element (Kij needn't be written in detail, since the pressure 
modes are associated solely with the rectangular and indefinite C matrix) using the notation 
shown in Figure 1 and the bilinear isoparametric mapping, e.g. 

where ye =I:=, yi44 etc., Ai is the area of element i, and 4; is the local (element level) basis 
function, to give 

from which the global equations corresponding to CP and C W  can be formed in the 
standard way by adding the appropriate element level contributions. Note that for the 
bilinear element, each global continuity equation is identical to the continuity equation 
applied over a single element, in the form C:U" = 0 for element rn, rn = 1,2, . . . , M, where 
U" = (uy, uy,  uy,  uT, I$', vy, vy, u T ) ~ .  Each continuity equation describes an element level 
mass balance and is a consequence of the discontinuous pressure approximation; by contrast, 
continuous (C") pressure approximation leads to an overall mass balance but can never 
ensure element level mass balances. 

This element, which is also referred to as the 4-node element, is considered in detail 
because it leads to a simple, but intriguing and important exposition of the occurrence and 
ramifications of pressure modes. In succeeding sections, we will generalize these notions to 
other elements and point out the impact of pressure modes-both on numerical simulations 
and theory. 

The discretized continuity equations (constraint equations among the velocity variables on 
each element), in conjunction with the imposed boundary conditions, can lead to what are 

(8) cr, = L[ - 
J I  2 Y 4  Y2, Y i - Y 3 ,  Y2-Y4, Y 3 - Y i  x2-x4Y x 3 - x 1 7  x4-x22 x1-x31 

termed 'pressure modes'. (Note that the pressure is implicitly defined by the continuity 

I-, 
Figure 1. General bilinear element 
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constraints; there is one pressure per continuity equation.) These pressure modes (for any 
element) correspond to special solutions of (4a,b) with f = Q and g = 0, for which U = 0 and 
CP = 0 for nontrivial P. They may be spurious in that they do not correspond to actual 
(physical) pressures and, in a numerical calculation, they are imbedded in the numerical 
results in such a way that the physical pressures, which are still present, are often ‘buried in 
the noise level.’ It turns out that there are two pressure modes for this element, one of which 
is physical and the other spurious. From the viewpoint of linear algebra, these pressure 
modes correspond to solutions in the null space of the linear operator (matrix) in that the 
corresponding eigenvalues are zero. 

In the mixed-interpolation (or Lagrange multiplier) method (4a,b) the concomitant matrix 
singularity causes these pressure modes to be present in arbitrary amounts. In the penalty 
method, however (4c,d), while (related) pressure modes can still OCCUT, their magnitudes are 
not arbitrary; the amplitudes are automatically prescribed and are, in some sense, minimized 
(this will be explained in due course). 

The discussion of the pressure modes will be aided by first considering the simple 
rectangular grid shown in Figure 2, in which a small number of elements is shown to simplify 
the presentation. 

X 

Figure 2. A simple mesh of quadrilateral elements 

A. The hydrostatic pressure mode 

As a prelude to the discussion of the more subtle checkerboard mode (the spurious mode; 
hereafter abbreviated as the CB mode), we first elucidate the simpler and much more 
common mode, the (physical) hydrostatic pressure mode. This pressure mode is more general 
in that it can occur for any type of velocity and pressure approximation and for any type of 
domain subdivision. Its existence depends solely on the form of the boundary conditions 
imposed on the domain. Thus, while particular portions of this discussion are limited to the 
4-node element, the general results and conclusions apply to any type of element. 

The individual discretized continuity equations are rewritten as 

J t . / + ~ . u h = ~ ,  i = l , 2  ,..., M 
n 

(9) 

where M is the total number of elements (and pressures) in the domain. Of course, in 
practice, R is replaced by Ai, since +i = 0 on LBA,. By simple addition of all M equations 
we arrive at the global mass balance, 

(104 
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which, via the divergence theorem, is equivalent to 

n . uh = 0. (lob) 

Note that since this global equation is a simple linear combination of the individual 
continuity equations, it is inherently contained in the M separate equations and must 
therefore be satisfied by the numerical solution. It is this fact which can lead to the 
hydrostatic pressure mode; (lob) represents a constraint equation among the normal velocity 
components at the boundary nodes. 

For the mesh in Figure 2, the global constraint equation, which may also be formed from 
the appropriate element level matrices (S), takes the form 

(11) 
( ~ , - u i ) h i + ( u g - ~ g ) ( h i +  h 2 ) + ( ~ 1 2 - ~ 9 ) h 2 +  

(219- U I ) ~ I  +(%cI- u2)(l1 -k l2 )  ( ~ I I - -  '%)(b+ l 3 )  -k (u12- uz$)lg = 0, 
which is the constraint equation among normal velocity Components on the entire boundary 
of the domain and is represented pictorially by the vectors in Figure 2. It is to be emphasized 
that the general result (10) is independent of grid size or shape and also applies to other 
representations of pressure and velocity. 

Consideration of the applied boundary conditions then leads directly to the following 
conclusions (assuming that there are no other pressure modes present): 

1. If the imposed boundary conditions are such that they do not themselves imply a 
constraint among the normal velocities on the entire boundary (i.e. normal traction condi- 
tions, applied over any portion of the boundary), then the constraint equation (10) is 
independent and indeed required, there are no redundant continuity equations, there is no 
zero eigenvalue in the assembled matrix, and there is no hydrostatic pressure mode (the 
pressure level is set by the normal traction boundary conditions). 

2. If the imposed boundary conditions identically satisfy (i.e. duplicate) the same con- 
straint equation (which can only occur if all normal velocity components on the boundary are 
specified) as is implied by the global mass balance ((10) in general, (11) for the simple 
example), then the system is consistent, but overspecified. There will then exist a hydrostatic 
pressure mode (constant pressure; to be shown later), there is one redundant continuity 
equation, and the assembled matrix will have a zero eigenvalue corresponding to this 
pressure mode. If this pressure mode is the only one present, it can be specified, with no 
adverse effects, by eliminating (omitting) any one of the discretized continuity equations and 
selecting an arbitrary constant for the corresponding pressure. 

The simplest and most common example is that of a contained flow. Here the normal 
velocity components are zero at each node on the boundary which leads to the well known 
case wherein the pressure is determined only up to an arbitrary additive constant. 

3. Finally, if the imposed boundary conditions violate the constraint equation among the 
normal velocities on the boundary (which again can only occur if all normal velocity 
components on 3 0  are specified), the problem is ill-posed, the algebraic system will be 
inconsistent, and no solution is possible (owing to the lack of global mass balance implied by 
the erroneous boundary conditions). 

B. The checkerboard pressure mode 

We now return to the more subtle pressure mode, the spurious CB mode and ask the 
question: Are there, in addition to the simple hydrostatic case just discussed, any other ways 
in which the M continuity equations can be linearly combined such that the result is a 
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7 
(a) (b) 
Figure 3.  A general patch of elements 

boundary node constraint equation (i.e. again, with all internal nodes eliminated)? To answer 
this question, consider first the patch of four elements shown in Figure 3(a). In order to show 
that it is possible to combine the discretized continuity equations on each element so as to 
eliminate uo and vo we may, without loss of generality, set ui = vj = 0, j = 1,2, .  . . , 8 .  

Using the general element level matrix given by (8), the four continuity equations for this 
Datch of elements mav be written as 

where 
Y3-Yl y5-Y3 Y7-Y.5 Y 1 - Y 7  

x1-x3 X 3 - X s  xg-x7 x7-x1 Co= [ 
The rank of C, is always two (except in the disallowed degenerate case when nodes 1,3,5 
and 7 are collinear) and consequently there exist two linearly independent vectors P such 
that PTC;f = 0. One such vector is given by P = a(1, 1,1, l)T where a is an arbitrary constant, 
and corresponds to the hydrostatic mode discussed earlier. To describe the second such 
vector (the CB vector), we first construct the four triangles shown in Figure 3(b) (via straight 
lines interconnecting nodes 1,3,5 and 7 of Figure 3(a); the intersection of the two diagonals 
is generally not a node of the original grid). Then, omitting the algebraic details, it may be 
shown that P;fCT = 0 for 

where Po is an arbitrary constant and A: denotes the area of the triangle associated with 
node j which lies in element k. It is understood that the components of Po are identified with 
the correspondingly numbered element. This multiplying vector necessarily causes uo, vo to 
drop out when the linear combination P;fCwo is formed. Since the internal velocities have 
been eliminated, a (spurious) ‘boundary’ constraint (and a CB mode) is always present for a 
patch of four elements taken in isolation; the nature of this constraint, and its potential 
‘propagation’ through the mesh will now be described. 

For a general mesh, the above construction must be performed at each internal node and 
then the local multiplying vectors (Pi} must be checked to determine whether or not they can 
be consistently assembled to form a global multiplying vector, which is required for the mesh 
to exhibit a CB mode. To illustrate this process, consider the enlarged patch of 6 elements 
shown in Figure 3(a) and let Po,P1, be the local multiplying vectors for nodes 0 and 1 
respectively. The vector Po is defined above and PI is given by 

Po = &(l/A& -1/A& 1/A& -1/A;IT, 

PI = Bi(l/A;, -1/Ai, 1lA:, -1/A?lT, 
where the components of PI are identified with elements 6 ,  1, 4 and 5 respectively. For 
consistency the first and fourth components of Po should agree with the second and third 
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components of PI respectively, since they are each identified with elements 1 and 4. This 
gives 

and 

that is 

(which also relates Pi to Po) as the condition on the geometry of the grid under which a 
boundary constraint could exist. If the grid satisfies (12), the appropriate linear combination 
of the six continuity equations which eliminates u,, ul, no and n1 is 

P = &(1/A& -1/A& 1/A& -l/A& A:/(A:A:), -A:/(A$A:)T (12a) 
which, for a uniform arrangement of rectangular elements, reduces to pi = *p,/Area of 
element j .  In both cases the checkerboard sign pattern is apparent. If the mesh in Figure 3(a) 
is extended in other directions, a condition similar to (12) must be satisfied at each of the 
nodes 3, 5,7, . . . if all the internal variables are to be eliminated and a (potential-depending 
on boundary conditions) CB mode is to exist. 

Regular assemblages of rectangular or parallelogram elements are simple examples of 
grids which identically satisfy all geometrical constraints of the form (12), but more irregular 
structures are also possible, an example of which will be presented later. 

We shall now assume that the grids allow the complete elimination of internal velocities 
and try to elucidate the nature of the resulting boundary constraint. This constraint may 
conveniently be written in the form 

c cr,(;)’. =o, 
boundary 

(13) 
nodes (i) 

where cri f 1 (the sign is taken arbitrarily at any one boundary node and then alternates as the 
nodes are taken in sequence around the boundary) and the vectors a, depend only on the 
geometry of the mesh in the neighbourhood of node j .  For example, at a corner such as node 
4 in Figure 3(a), a, is perpendicular to the diagonal joining nodes 3 and 5. At a more general 
boundary point such as node 3 in Figure 4(a), the situation is a little more complicated. 
Define A: and A: to be the areas of the triangles 02P and 04P respectively, where OP is 
perpendicular to the line joining nodes 4 and 2. It can then be shown that a, is parallel to the 
vector 

where h is the distance OP, A: and A: are defined as in Figure 3(b) and n, t are, respectively, 
unit vectors orthogonal and parallel to the line 4-2 and serve to define normal and tangential 
directions at node 3. The vectors a, are sketched in Figures 4(b) and 4(c) for two grids of 
square elements. For the special, but common (and important) case of a grid composed of 
rectangular elements, a simpler (degenerate) form of the boundary constraint equation is 
available. If the elements are considered to be alternately ‘red’ or ‘black’ as on a checker- 
board, the special form of the boundary constraint equation is 

(At/A:-Ag/A:)n+ h2(1/Ai+ 1/A& (134 

C CJA, - C CJAi = 0, (14) 
red black 

where Ci represents the left-hand side of the discretized continuity equation ([CWli) on the 
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n 

Figure 4. Element patch (a) and two CB grids (b), (c) 

ith element which has area Ai. For example, applied to the grid of Figure 2, this yields 

a constraint among the tangential boundary velocities. Equation (14) also describes the less 
common case of a grid composed of parallelograms. 

When the grid is composed of square elements, another interpretation of the spurious 
boundary constraints, (lo) and (14), is possible. Let afire, (af&,&) denote the intersection of 
red (black) elements with the boundary afi. Since (lob) can be expressed as CEl Ci = O  in 
the current notation, it is clear that (10) and (14) together imply that xred Ci = 0 and 
xblack Ci = 0; i.e., the net flow across each of afire, and dfiblack must be zero separately. 

Finally in terms of the notation developed in this section, the boundary constraint (lob), 
corresponding to the hydrostatic pressure mode, may be written 

nodes l j )  

where bi is parallel to a, when j is a corner node whilst, at a more general point such as node 3 of 
Figure 4(a), b3 is parallel to (A?j+Ag)n, which should be compared with the expression 
(13a). It may be worth repeating that (15) is a valid boundary constraint because it has a 
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physical meaning (a global mass balance), but the boundary constraint represented by (13) 
(or (14) for rectangles) is a spurious artifact of the discretization. 

Noting now the analogy between this boundary constraint equation (13) and that pre- 
sented in the previous section ((10) or (11); or (15)), we can again draw the following 
conclusions by considering that (13) must be satisfied regardless of the applied boundary 
conditions (again ignoring, temporarily, the possibility of other pressure modes): 

1. If the imposed boundary conditions (detailed in the next section) are such that they do 
not themselves imply a constraint among the velocities on the entire boundary, then the 
constraint equation (13) is independent and required, there are no redundant continuity 
equations, there is no zero eigenvalue in the assembled matrix, and there is no pressure 
mode. The resulting ‘boundary equation’ ((13) or (14)) generated by the continuity equa- 
tions, is, however, extraneous (and spurious) and will be considered in more detail later. 

2. If the imposed boundary conditions duplicate the same constraint equation, then the 
system is consistent, but over-specified. There will then exist a spurious CB pressure mode 
(related to the spurious boundary constraint), there is one redundant continuity equation, 
and the assembled matrix will have a zero eigenvalue corresponding to this pressure’mode. If 
this pressure mode is the only one present, it can be ‘specified’ (but not eliminated) by 
omitting any one of the discretized continuity equations and selecting an arbitrary constant 
for the corresponding pressure. In addition, this pressure mode must be filtered if usable 
pressures are to be obtained; effective techniques will be presented in a later section. 

3.  Finally, if the imposed boundary conditions violate the (spurious) constraint of (13), the 
discretized problem is ill-posed, the algebraic system will be inconsistent, and no solution is 
possible. The conditions under which such a violation (which is non-physical) can occur are 
somewhat subtle, and fortunately do not appear to arise often; an example will be presented 
shortly. 

To conclude this section, we consider the possibility of the simultaneous existence of both 
pressure modes since both constraint equations ((10) and (13)) are always applicable (there 
are but two pressure modes for this element): 

1. If the applied boundary conditions imply no constraint equations among boundary 
velocities, then both implied constraint equations are required, there are no  redundant 
continuity equations, no zero eigenvalues, and no pressure modes. 

2. If the boundary conditions satisfy (duplicate) one of the constraint equations and do not 
violate the other, the system is consistent but over-specified, and there is one redundant 
continuity equation. Depending upon which of the constraint equations is satisfied by the 
boundary conditions, there will exist either a hydrostatic or a CB pressure mode. In either 
case, there is a zero eigenvalne in the matrix which can be removed by specifying one 
pressure and deleting the corresponding continuity equation. If the pressure mode is the 
spurious CB mode, further treatment will be required to filter this mode. 

3. If the imposed boundary conditions duplicate both constraint equations, the system is 
consistent but over-specified; there are then two redundant continuity equations, one on a 
‘black‘ element and the other (in general) on a ‘red’. The corresponding two zero eigenvalues 
in the matrix can be removed by specifying two pressures (at any values, the only restriction 
being that, in general, one must be black, the other red; two ‘red pressures’ may be specified 
only if the corresponding areas are not identical) and deleting the two corresponding 
continuity equations. Again in this case, post-processing will be required to filter the spurious 
CB mode. Note here that the specification of the pressure at two points in the flow field is 
physically absurd, but mathematically permissible; it is simply another manifestation of the 
spuricus pressure mode. 
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4. Finally, if either of the constraints is violated by the imposed boundary conditions, the 

Further details on these matters will be presented below, and later, a sufficient number of 
problem is ill-posed, the algebraic system will be inconsistent, and no solution is possible. 

numerical examples which substantiate these claims. 

C .  Description of the pressure modes 

eigenvalue in the assembled system; i.e. the eigenvalue problem associated with (4a,b) is 
As mentioned earlier, the existence of a pressure mode is associated with a zero 

Kwi +Cri = Aiwi 
CTwi = &ri 

where {&} are the eigenvalues and (wi, ri)T the eigenvectors, i = 1,2, . . . , N + M ,  and 
N = Ns + N2. When a pressure mode exists, there is a corresponding nonzero 'pressure' 
solution to (16) of the form 

A, = 0 

w, = o  (17) 

Cr, = o  
and 

The eigenvector, (0, ri)T, corresponding to (17\, is a pressure mode and our goal here is to 
describe its form. 

The clue to the characterization of these pressure modes is contained in the same linear 
combinations of continuity equations which were employed to display their existence. Let 
zh(x) be the general velocity test function employed in the Galerkin approximation of (la); 
then, as in (3a), 

N" 

Zh = c z&(x). 
k=S  

In accordance with the principles of Galerkin approximation, if the velocity uh (or any 
component of nh) is prescribed at a boundary point, then zh (or its corresponding compo- 
nent) must vanish at that point. For a pressure mode ri to exist, we must have 

ZTCri = 0 (18) 

for nontrivial ri and all global vectors Z which conform to the boundary conditions. We are 
now in a position to analyse the modes more closely. 

1. Hydrostatic pressure mode. For this mode ri =PH where PH = a ( l , l ,  . . . , l)T and a is 
an arbitrary constant. Now, from the earlier discussion of the boundary constraint, (15), 

ZTCPH = P;CTZ = a bTzh lj. 
boundary 
nodes 0) 

When the applied boundary conditions imply that bTuh li is specified at all boundary nodes. 
then these values must satisfy (15); furthermore, bTzh l i  must vanish for all functions zh and 
boundary nodes j ,  which from (19) implies that CPH = 0. The hydrostatic pressure mode will 
therefore exist under the following boundary conditions: 

a) u and t~ specified on 3 0  (as in a contained flow for example), 
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b) u and z1 specified on part of 8 0  and the normal velocity and tangential force V;) 
prescribed on the remainder. Here it is important to define the normal and tangential 
directions as indicated in Figure 4(a). 

The hydrostatic pressure mode will not exist under any other type of boundary condition but 
the resulting solution uh will satisfy (15). 

2. Checkerboard pressure mode. We assume that the mesh satisfies the relation (12) at 
each internal node. Then, by choosing ci =P, where the components of P, define the linear 
combination of continuity equations which leads to (13), we have, from (13), 

Z~CP, = P T C ~ Z  = C aTzh li. 
boundary 
nodes 0') 

For a grid of simple rectangles, the components of P, are *1/Ai, where Ai is the area of the 
ith element and the plus sign corresponds to a 'black' element and the minus sign to a 'red.' 
P, is more difficult to describe for a more general mesh which could support a CB mode (cf. 
(12a)). By analogy with the hydrostatic mode, when the applied boundary conditions imply 
that aTuh I I  is specified at each boundary node, then these values must satisfy the constraint 
(13); furthermore such boundary conditions imply that aTzh I j  = 0 for all functions zh and 
boundary nodes j .  Consequently, CP, = 0, indicating that a CB mode will exist. It follows 
therefore that a CB mode will be present if the velocity uh is prescribed everywhere on an. 
In more general problems the normal force (f,) and/or the tangential force (fJ may be 
specified on part of the boundary. To simplify the discussion of these cases, let an= 
80,  Uan,, where an, is linear. We shall suppose that both components of velocity are 
prescribed on ai l ,  whereas, on anl 

a) ft and u, are specified: all test functions zh must satisfy zx = 0, i.e. the test functions 
have nonzero component only in the tangential direction, t. Using the representation 
(13a) for the vectors ai on an,, it follows that aTzh li # 0 and consequently CP, # 0. This 
in turn implies that there cannot be a CB mode. 

b) f t  and fn are specified: no CB mode can exist, 
c) fn and u, are specified: similar to case a), the test functions have nonzero component 

only in the normal direction n and therefore, from (20) and (13a), aTzhli will vanish 
only for certain mesh configurations near anCz,. For example, at a typical boundary node 
such as 3 in Figure 4(a) (the points 2, 3 and 4 lie on an, and must now be collinear) the 
geometric constraint deduced from (13a) is 

AgIAA = A?j/A:. (21) 

This is satisfied for instance when all the elements which share an edge with an, are 
rectangular and identical, thus leading to a CB mode, an example of which is shown in 
Figure 5. 

If the tangential boundary condition at the right side is changed from 2) = 0 to ft = 0, the 
CB mode could no longer exist; we will return to such a case shortly, where we present 
another curious manifestation of the spurious constraint equation. 

In this section we have presented the conditions under which pressure modes can exist and 
have shown the form of the associated eigenvectors. One of the reasons for describing the 
CB mode in such generality is to emphasize that the nature of the geometric constraints, (13) 
and (18), can make it extremely difficult to determine a priori whether or not a CB mode will 
be present. In general, the nonexistence of pressure modes is a sufficient condition for the 
existence and uniqueness of a solution to the algebraic system. Conversely, the existence of 
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u = v = o  

u = u  
V =  

(Y) 
0 

f" = 0 
v = o  

u = v = o  

Figure 5 .  An example of a domain and boundary conditions which will cause a CB pressure 
mode 

a pressure mode affects existence and uniqueness of a solution to the algebraic system. For 
example, there are common situations in which pressure modes exist and the algebraic 
solution exists, but is nonunique (in the pressure); furthermore, there are even situations in 
which a CB mode 'exists' and precludes a solution of the discretized Navier-Stokes 
equations! This ill-posedness is an artifact of the spurious CB constraint equation combined 
with boundary conditions which, while physically valid and meaningful, violate this con- 
straint. An example of such a case is presented in the next section. 

D. Further implications of the spurious constraint 

The fact that the 'CB constraint equation,' ((13); (14) for rectangles), must always be 
satisfied by the discretized solution, carries other, rather serious implications over and above 
the possible existence of a CB mode. We will demonstrate two consequences of this 
extraneous constraint via simple examples. In the first example, the constraint on boundary 
velocities occurs in a flow which has no CB mode and. in the second example, it occurs in 
conjunction with the CB mode and can lead to an ill-posed problem. 

Example 1: Tangential velocity constraints. We begin by returning to the grid in Figure 5 ,  
assumed to be composed of rectangular elements, and modify the outflow boundary 
condition from v = 0 to f, = 0, so that no CB mode can exist. However, application of the CB 
constraint equation (14) to this grid gives, considering the imposed boundary conditions? 

The existence of this spurious constraint equation, which will be satisfied by the numerical 
solution, is an artifact of the discretization with the bilinear element and it exists indepen- 
dently of, and in addition to, the proper constraints; viz, those imposed by the shear 
stress-free boundary condition and global mass conservation. If this 'element' converges to 
the solution of the Navier-Stokes equations, this constraint presumably is not too harmful 
(we have performed many numerical simulations which do, in fact, satisfy (22), but which still 
'look reasonable') and in fact, must vanish as h -+ 0. 

It is also noteworthy that the same CB constraint equation applies internally; i.e. on the 
'boundary' of any patch of elements (which could be completely internal or could include a 
portion of the domain boundary). 
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u = v = o  

Figure 6. The driven cavity problem 

We next consider a case where the CB constraint can be very harmful, after mentioning 
that if v is specified at the outflow boundary in this example in such a way that (22) is 
violated, the algebraic system will be inconsistent and no solution exists. 

Example 2: The driven cavity. The popular lid-driven cavity problem is an appropriate 
example to demonstrate another important consequence of the CB constraint, and is 
depicted in Figure 6. 

Application of (14) to this grid gives a different result, depending on whether N -  1 (the 
number of elements across the top of the cavity) is even or odd: 

For N -  1 even, 

and for N-1 odd, 

Consider first the simpler case in which = uo, i = 1,2, . . . , N ;  i.e. the case of equal velocity 
at every node, including the first and last (a 'flow-through, cavity). In this case, both (23) and 
(24) are satisfied identically and a CB mode will exist (i.e. the CB constraint is automatically 
satisfied for either an even or odd mesh). If, however, we wish to compute the more difficult 
case of a contained flow, we must set u ,=uN=O and, for example, &=uo,  i =  
2 ,3 , .  . . , N -  1. In this case we obtain 

- ~ , , ( ' + ~ ) = 0  IN-1 for an even grid, 
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u,( --<+&) 1 = 0 for an odd grid. 

While the constraint equation on an odd grid can be satisfied, if and only if 1, = I N - ,  (in which 
case the CB pressure mode, as well as the hydrostatic mode, exists), it can never be satisfied 
on an even grid (which also possesses the two pressure modes). Hence, the driven cavity 
problem, for these (mathematically permissible) boundary conditions, is ill  -posed on any grid 
with an even number of elements across the top and on any odd-element grid which doesn't 
satisfy 1, = EN-,. These are clearly physically erroneous constraints and are forced upon the 
discretized system by the extraneous CB pressure mode. An even grid can, if desired, be 
employed for a contained flow (ul = uN = 0) simulation, if the proper precautions are taken; 
e.g. for y = u,; i = 3,4, .  . . , N-2, (23) gives 

u,(~+')-u2(~+~)-uN-1("-i--L)=o 12 L-2 4 12 L - 2  L l  

which is easily satisfied (e.g. for l =constant, u,+ uN-, = uo will suffice, and it is then 
reasonable to take u2 = uN-1= 1/2u0; we have used this approach successfully and results 
were presented in Lee et aE." (If we attempt to solve the ill-posed algebraic system, we 
obtain pressures of O( lo") and velocities which, while 0(1), are meaningless.) 

These conclusions, which have been substantiated via numerical calculations, are also 
explainable from the viewpoint of linear algebra. When the coefficient matrix in (4a,b) is 
rank deficient, the algebraic system is inconsistent unless the right hand side vector has no 
projection into the null space of the matrix (it must lie in the range of the matrix). Since the 
null space (of dimension 2) comprises the two pressure modes, the solvability conditions for 
(4a,b) are 

(g, p3 = 0 (25b) 

where (,) is the conventional inner product. Since g is composed from specified boundary 
velocities (it is obtained by transposing those terms in C w  = 0 corresponding to prescribed 
velocities to the right hand side), it is perhaps not surprising that (25a) is precisely the global 
mass balance requirement ((10) or (11)) and (2Sb) is the CB constraint equation ((13) or (14) 
or, for the driven cavity example, (23) or (24)). 

The net result, as demonstrated by these two examples, is that the CB constraint is rather 
insidious, far-reaching, and undoubtedly even has important implications regarding the 
ultimate proof of convergence of this FEM approximation (which proof, according to 
Fortin?' is 'still an open question'-perhaps it must remain that way). 

E. The impure checkerboard pressure mode 

We now address one of the most difficult (and ominous) of the pressure mode effects which 
we have encountered. One might optimistically expect, since the existence of the CB mode 
was proven under rather specialized conditions, that it would not occur under the more 
general conditions of a mesh composed of variously distorted isoparametric elements. 
Unfortunately, this is not the case and 'our troubles have just begun'; in fact, a 'residual' CB 
pattern appears to be present (under appropriate boundary conditions; viz, those which 
permit the existence of a pure CB mode) even in a mesh composed of severely distorted 
elements. However, since it does not display identical characteristics to what may be called 
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the pure CB mode, we have labelled this an ‘impure’ CB mode. In this section, we attempt to 
characterize this CB mode, the impurity of which hampers a rigorous analysis. The important 
fact is that it does persist in numerical calculations and thus, in a later section, we present 
effective means of dealing with both pure and impure CB modes. 

Basically, the impure CB mode appears to exist in such a way that, while not pure (there is 
no corresponding zero eigenvalue with an associated pure pressure eigenvector-other than 
the hydrostatic pressure mode-and therefore, no associated redundant continuity equation), 
the pressure solution is still oscillatory and generally unacceptable without further post- 
processing. Our explanation of the impure mode (one which appears to explain essentially all 
of the results from a wide variety of numerical experiments) is one which considers it as a 
perturbation from the simpler pure CB mode and it is this approach which we shall present; 
i.e. any mesh which does not support a pure CB mode is to be interpreted as a perturbation 
(small in theory, but not necessarily in practice) from one which does. 

To motivate this discussion, consider the following experimental results from the cavity 
problem (details of which are presented under Numerical Examples in Part 2): 

1. On a mesh composed of simple rectangles, there exists a pure CB pressure mode for 
the driven or undriven cavity problem (by undriven we mean f=0, g=O in (4a,b). 
Actually, to excite the CB mode in the undriven case, we must set the pressure on one 
element so that in fact g#O. In this case, the velocity is, of course, zero to machine 
roundoff). 

2. If the mesh is perturbed by moving one or more internal nodes (a small but ‘sufficient’ 
distance), the undriven cavity displays no CB mode (except that caused by roundoff 
error for very small perturbations), but the driven cavity contains (often in very sizable 
amount) the impure CB pressure mode. Furthermore, in the perturbed mesh, our 
Gaussian elimination process (a frontal solver) produces one small, but nonzero pivot 
(again, for ‘recognizable’ perturbations), whereas when the pure CB mode exists, the 
solver produces one pivot of essentially zero (machine roundoff), which indicates a 
singular matrix. (For ‘large’ mesh perturbations, there are usually no clearly identifiable 
small pivots). 

3. For the driven cavity, the perturbation in velocities is often inordinately large (O(1)) 
relative to the size of the mesh perturbation [e.g. to lOP3)-a quite unsettling 
result. 

It thus appears that the original CB theory is only partially applicable in that it would 
predict that the perturbed matrix would no longer have a zero eigenvalue (correct) and that a 
CB pressure mode would no longer exist (incorrect). It is toward the reconciliation of these 
matters, as well as that of the large velocity perturbation, that we present a perturbation 
analysis of the impure CB mode. 

A crucial role is played in the analysis by the way in which a small perturbation of the 
nodes affects the continuity constraints. For a typical element (say element 1 of Figure 3(a)) 
the coordinates of the jth node (xi, y,) are perturbed to (3 i- &al cos el, yi -&a, sin @,) where 
\ail .I 1 (j = 0,1,2,3) and with the proviso that boundary nodes remain fixed. The continuity 
constraints on the original and perturbed elements are represented by [C%],, and [CTU],, 
respectively, where, at this point the global N-vector U is left unspecified. Defining 
vi = (a, sin 0,, a;. cos O1), j = 0, 1,2,3, it can be shown by direct construction that 

[CXI, = EC-Jl1- d ( U 2  - UO) tv3 - v,) + t u 3  - Ul) * ( v o  -2)) 

= [C’TV], + &em,  
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where the global N-vector el is independent of E. We now suppose that the original element 
belongs to a grid of elements on which there is a pure CB mode P, (normalized so that 
llP,\l = 1). Then PzCw = 0 for any vector U and consequently the appropriate linear 
combination of all element equations of the above form leads to 

where c = cp=l [Pclkck is independent of E and the construction of ck on element k follows 
that typified above for c, (an alternative way to construct c and to derive (27) is given at the 
end of Appendix 11). Finally, if we take U =Us, where Us denotes the velocity solution on 
the perturbed grid, it must also satisfy Cm, = O  which, from (26), leads to the spurious 
internal constraint 

ew, = 0, (27) 
which can lead to an 0(1) perturbation in U regardless of the smallness of E. By means of 
suitable perturbations of the nodes, the velocity U, can therefore be made to satisfy virtually 
any preassigned (nonphysical) constraint, which may preclude the possibility of convergence 
as h -+ 0 (here, of course, E must be proportional to h).  

Further ramifications of this constraint can be deduced by analysing the eigen problems for 
the two grids. This analysis is somewhat lengthy and the details are therefore relegated to 
Appendix 11; we present here only the final results. The eigen problem on the unperturbed 
grid (see (16)) possesses two zero eigenvalues (A, = A, = 0) and, corresponding to the nonzero 

eigenvalues A,, A,, . . . , A,+,, a set of orthonormal eigenvectors , j = 3,.4, . . . , N + M .  

The solution of the system (4a,b) may be conveniently expressed in the form 
t) 

where 

the coefficients yH, y, are arbitrary and the pressure modes are normalized so that 
llPHll = \IPJ = 1. The corresponding solution on the perturbed grid is 

where 7: is a fixed constant of magnitude O(1) and PL = Pc- (PH, P,>PH. Furthermore, the 
eigenvalues A;, A;, . . . , A&+M of the perturbed system satisfy 

0 , j = 1, the hydrostatic mode 
O(E’), j=2,  the CB mode 
O(E), j = 3 , 4 , . .  . , N + M .  

(30) 

Comparison of (28) and (29) reveals that there is in general an 0(1) perturbation of the 
velocity field and the amplitude of the CB pressure mode is O(E-’). Clearly some action 
must be taken to combat this behaviour if reliable results are to be obtained from this 
element. Before addressing ourselves to this question we point out that E should not be 
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identified with round-off error effects since, for practical purposes, (29) accurately reflects 
the behaviour of the computed solution only when E is at least large enough that an 
inequality of the form 1 + E‘ # 1 is satisfied to machine precision; for smaller values of E, the 
situation is better described by (28). This is the practical interpretation of the singular 
limiting process as E -+ 0 (the actual limit does not exist since the solution is not analytic at 
E = 0). We may also think of E as being a measure of the distance from a given (perturbed) 
grid to the nearest pure CB grid. 

The significant difficulties associated with the singular limit can be more easily appreciated 
and the impure mode perhaps better understood by considering the following simple but 
powerful example with only two equations: 

The matrix has eigenvalues Al = 1, A2 = 0 and the linear system has the solution 

is arbitrary. A small perturbation in the off-diagonal elements gives 

The matrix now has eigenvalues A; = [ 1 + d( 1 + 4~’)]/2 = 1 + .s2 and A, = [ 1 - d( 1 + 4~’)]/2 = 
-E’, and the algebraic system has the solution The first component is changed by 

0(1)  and the second by 0 ( 1 / ~ ) ;  furthermore, the unperturbed solution cannot be recovered 
by letting E approach zero. (Although the eigenvalues are both perturbed to O(E’), A, would 
be perturbed to 0(6)  if we had also perturbed the 1 in the matrix to 1 + 6; but the perturbed 
solution would still be (0, 1 / ~ ) ~ . )  

These perturbation results can be used to explain the observed behaviour of the numerical 
solution to the perturbed cavity problem (and ostensibly any other situation in which an 
impure CB mode exists): For the undriven cavity, f = 0 and g = 0 and hence, (29) gives (since 
y;=O; see Appendix 11) 

which agrees with our numerical result (there is no CB mode). For the driven cavity, f and g 
are of course nonzero, the solution is contaminated with a ‘significant’ amount of the CB 
pressure mode, and the velocity perturbations are 0(1), which also corroborates our 
numerical results. In both cases, the eigenvalue associated with the CB mode is nonzero (the 
smallest pivot varies like E’ when one pressure is specified). 

Focusing now on the inordinately large velocity perturbation caused by the impure mode, 
we can suggest a practical and usually effective remedy. Recall first that in the presence of a 
hydrostatic mode and a pure CB mode, it is quite permissible to peg (specify) the pressures 
on two elements, one red and one black, and remove the continuity equations for these 
elements; the two deleted constraints will be satisfied implicitly. In the case of an impure CB 
mode, one can proceed similarly (at least for small E): the pressure can be pegged on 
elements M -  1 and M, say, and the momentum equations solved subject to the constraints 

[Cm,],=O, k = 1 , 2  ,..., M-2 .  
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From these constraints, (26), and the identity P g C w E  = 0, where PH = yH(l, 1, . . . ,1)’ is the 
hydrostatic mode, we can deduce that 

Provided that the ‘colour’ of element M-1 is different than that of M, the corresponding 
components of the (pure) CB vector P, will have opposite sign and the denominator on the 
right hand side of (32) cannot vanish. Thus, whilst there is not an exact mass balance on 
these two elements, the actual imbalance will be small in the troublesome cases when E is 
small, and, importantly, the velocity perturbation is now small-O(s). Any attempt to 
achieve exact mass balance by pegging the pressure on only one element will of course cause 
(32) to degenerate to the constraint (27). Whether the loss of exact mass balances on two 
elements is ‘worse than’ the potentially 0(1) velocity error appears to depend on how far the 
perturbed mesh is from one which displays a pure CB, a determination that is generally 
impossible to make a priori. In the absence of a hydrostatic mode, the analogous procedure is 
to simply peg the pressure on any single element (one then trades an inexact element mass 
blance on one element for a more regular perturbed result-the velocity field will then be 
perturbed to O(s)). 

We have ignored boundary terms in the above analysis in order to present a clearer 
picture; the conclusions remain valid provided the boundary vector g satisfies the consistency 
conditions (25). 

Finally, in addition to the impure CB mode described above, we have also encountered 
another sort of impure mode. This mode is seen under certain conditions on a mesh which 
would support a pure CB (e.g. a grid of rectangles) except that the boundary conditions, 
specified ft along some portion of 80, should preclude it. While we have not analysed this 
(typically small amplitude) impure mode in any detail, it seems that the pure CB eigenvector 
is perturbed by the change in boundary conditions in such a way that the projection of g (see 
(4b)) in this direction (e.g. at a specified inflow boundary) excites the impure mode and the 
resulting pressures are oscillatory near such a boundary. 

F. Filtering and smoothing techniques 

Since the CB pressure mode has been shown to be quite persistent, it must be filtered from 
the physical part of the pressure solution if usable pressure results are to be obtained. The 
techniques which we have developed to filter this pressure mode are directly related to a 
knowledge of the form of the CB pressure mode eigenvector. They apply rigorously to the 
appropriate pure CB modes; for impure modes, they are sometimes less effective, but usually 
still quite useful, especially when used in conjunction with grid smoothing (see below). 

For a typical patch of four elements as shown in Figure 3(a), the CB vector P, has 
components (-l)i+l&/AL in element j ( j  = 1,2,3,4). Recognizing that the computed pres- 
sure is the sum of a physical pressure and a spurious pressure mode, it is clear that the CB 
contribution to the sum x:=l GAL is zero and this forms the basis for the filters. 

The proposed filtering techniques we shall describe also generate a smoothed (physical) 
pressure. The reason we refer to the pressure as smoothed is that the values will be available 
at the velocity nodes (or a closely related set of perturbed nodes, as described presently) 
rather than at the element centroids and can, if desired, be considered as continuous 
functions via representation by the velocity basis functions (c&}. 

Scheme 1 
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where A’, (j = 1,2,3,4) are the triangle areas defined in Figure 3(b), Pi is the computed (and 
polluted) pressure in element j, and Po is the smoothed presure at node 0 of Figure 3(a). 
Although this scheme always successfully filters the CB mode, it is cumbersome to imple- 
ment. We therefore propose two alternatives, which often appear to work nearly as well and 
are simpler to implement. 

Scheme 2 
4 4 

Po= c q A Q Z  A’,, (34) 
i = l  i = l  

where A’, (j = 1,2,3,4) are the triangle areas shown in Figure 7. It is a straightforward 
though tedious exercise to show that the CB mode makes no contribution to the numerator 
of (34). If the mesh were such that node 0 were on the straight lines 1-5 and 3-7 (e.g. for a 
mesh of rectangles), it is clear that Scheme 2 would be identical to Scheme 1. 

For a node lying on the boundary (for example node 3 in Figure 7) we define 

P, = (PIA: + P2Ag)/(A; +A;) for Scheme 1 or 2 (using & for the latter). 

The value provided by this expression should properly be associated with a point lying 
midway between node 0 and node 3; this can be corrected by taking instead the extrapolated 
value 2P3 -Po. The pressure at a corner node (e.g. node 2 of Figure 7) can be deduced either 
by extrapolating linearly from the three other nodes of the element (e.g. for node 2, 
Pz = P, + P3 - Po), or by a least squares process as described by Lee et ul.,” or by the scheme 
employed by Hughes et al? 

Scheme 3. Another filter which is simpler yet and has generally been quite successful, is 
also defined by (33), but this time the quantities A’, (j = 1,2,3,4) are interpreted more 
simply as the areas of the respective quadrilateral elements. This scheme does not always 
totally annihilate the CB mode (except for rectangular or parallelogram elements) and must 
therefore be used selectively. Also, boundary nodes still require additional treatment, as 
discussed above. Caldwel1l5 has applied this technique (extended from 2-D in the obvious 
way-volume weighting) to successfully smooth CB modes obtained when using the 3-D 
BAAL finite difference code (Pracht and Brackbill”). We (PMG and RLL) also use volume 
weighting in our new 3-D E M  code using the 8-node brick element. 

3 

Figure 7.  Triangular areas for Scheme 2 



38 R. L. SANI ET AL. 

Finally, the basis function-weighted scheme described in Lee et al.,l0 currently has little to 
recommend it; it is theoretically less sound, is more work than Scheme 3, and usually gives 
results which differ little from those of Scheme 3 .  Also note that Schemes 1 and 2 are 
equivalent to Scheme 3 for grids composed of rectangles or parallelograms. 

Numerical results based on these filters are described in a later section, as well as those in 
which the nodes are moved, as described next. 

G. Grid smoothing 

Improved results are obtained if the grid is smoothed (or relaxed) in the same manner as 
the pressures, a trick which is both useful and simple-it ca.n be done simultaneously with the 
pressure smoothing (same DO LOOP). In fact, it is easy to show (via Taylor series) that if Po 
is given by (33),  it is a second-order accurate approximation to a smoothed pressure only if 
its location (xo, yo) is given by 

4 4 

xo = c x,AY c Ab, (35) 
J = 1  3=1 

where xi is the x-coordinate of the centroid of element j ,  with an analogous equation for y o ;  
Ab is the same area used to smooth the pressure. (For a patch of four different-sized 
rectangles, this prescription moves the internal node to the geometric centre of the four- 
patch.) If the nodes are not re-located, the resulting smoothed pressure is only a first-order 
accurate result at the nodes. It seems probable that grid smoothing can be used to retain the 
optimal rate of convergence of the pressure on meshes which are quite distorted; we will 
present a rather convincing example of this later. After moving the internal nodes, the 
boundary nodes (save corners) can be moved in the tangential direction only and the 
previously discussed extrapolation methods employed. 

H. Extension to 3-D 

The extension of the CB analysis to 3-D, via the simplest element (8-node trilinear 
velocity, piecewise constant pressure on hexahedra) leads, somewhat surprisingly, to multiple 
CB pressure modes. On a grid composed of N, by N, by N, brick-shaped elements, there 
exist (almost) as many CB modes as there are ‘planes’ of elements which contain specified 
tangential velocity components on the boundary. The ‘worst case’ is a fully contained flow, 
for which there are N, +N, +N, -2 pure CB pressure modes (and one hydrostatic mode)! 
For example, for the mesh shown in Figure 8, there are 10 pure CB modes and one 
hydrostatic mode for a contained flow, corresponding to the shaded elements (11 of 60 
continuity equations are actually redundant). If the pressure is specified on the shaded 
elements, the 10 zero eigenvalues corresponding to the GB modes are eliminated (and of 
course the velocity solution is unaffected). 

Other than the appearance of multiple modes, most of the 2-D results seem to carry over: 
e.g. the existence of impure modes on distorted meshes, the elimination of some of the 
modes when shear stress boundary conditions are employed, and the corresponding spurious 
constraints on tangential velocities. (A possibility which is unique to 3-D is the occurrence of 
mixed modes; some pure, and some impure.) Similarly, the obvious extension of our 2-D 
filtering and smoothing techniques is applicable (we have successfully filtered all of these 
(pure) CB modes using simple volume averaging) and, indeed, necessary; finally, the 
additional advantages of grid smoothing are also applicable. 
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Y 

Figure 8. A simple 3-D grid 

APPENDIX I: THE PENALTY MATRIX 

Theorem 

Let Wh and a h  denote, respectively, the velocity and pressure spaces and define the linear 
operator v h :  W, 3 a h  by ( V h .  v, p) = (V . v, p), for all p E a h  and v E wh. then the consistent” 
penalty matrix B and the Lagrange multiplier matrix C are related by B =  CM-’CT where M 
is the mass matrix on at,. (Note: There does not seem to be any restriction on Wh and a h . )  

Proof. Let V and P denote the vectors of nodal values for v E wh and p E a h  ; then C, B 
are given by 

vTCp = (V . v, p) for all v E Wh9 p E a h  

VTBU = ( v h  . v, V h  . u) for all u, V E  Wk 
Now V h  . v E a h  and therefore there exists a matrix Q such that v h  . v = vc1JI(x), where 

$(x) denotes the vector of basis functions on a h .  Hence ( v h  . v, v h  . u) = VTQMQ”U with 
PTMR = (p, r )  for all p, r E a h .  By definition of v h ,  

( v . v , p ) = ( V h . v , p )  for all v E W h , P E ( P h  

= VTQMP. 

Thus C = QM and B = QMQT giving CM-’CT = QMM-’MQT = QMQT = B and the result is 
proved. 

APPENDIX 11: PERTURBATION ANALYSIS 

1. The unperturbed system 

We consider the solution of the N + M  square symmetric system 
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(see (4)), given that there exist two M-vectors PH, P, (the pure hydrostatic and CB modes 
respectively) such that 

The associated eigenvalue problem (see (16)) therefore has two zero eigenvalues (A, = A2 = 
0), the remaining N +  M -  2 eigenvalues being real and bounded strictly away from zero. Let 
(wi, ri)T, i = 1,2, . . . , N + M, denote an orthogonal system of eigenvectors normalized so that 
Ilwi112 + llri1!2 = 1. The eigenvectors corresponding to the zero eigenvalues are therefore 

CPH = CPc = 0. 

where Pi = P,- (PH, Pc)PH denotes a CB mode with an adjusted hydrostatic level (to ensure 
orthonormality ; note that the 'conventional' CB and hydrostatic eigenvectors are not 
orthogonal). 

A necessary and sufficient condition that (Al) has at least one solution is that the right 
hand side vector has zero projection into the null space of the coefficient matrix. Since the 
null space is spanned by the vectors defined in (A2), this condition is equivalent to 

(g, PH) = (g, P3 = 0 (A3) 
as previously mentioned in the text. Provided g satisfies (A3), the solution of (Al) may be 
written in the form 

where 

and -yH, yc are arbitrary 

2. The perturbed system 

constants. 

Let E be a small parameter and perturb system (Al) to 

such that 

~ ~ K E - K ~ I = O ( & ) , ~ ~ ~ ~ - K - ~ ~ ~ = O ( E ) , C ,  = c + E r  (A6) 
and the N x M matrix I? (independent of E )  is such that I'P, = 0, I'P, # 0. We shall denote by 
A: and (fvi, ii)T the eigenvalues and eigenvectors of the perturbed coefficient matrix in (A5). 
In contrast to the unperturbed system, we now have only one zero eigenvalue (y ,  = 0), the 
corresponding eigenvector being (w,, rJT = (0, PHIT. 

Our goal is to construct a solution of (A5) comparable to (A4), but first we must analyse the 
perturbed eigen problem. Estimates of the perturbed eigenvalues can be deduced from the 
following result (the estimate of A; is preliminary and will be refined later): 

Theorem 1 [Isaacson and Keller (see Part 2, Reference 39, p. 141)] 

Let A be an Hermitian matrix of order rz and have eigenvalues {k} .  If 

A x - p ~ ~ q ,  x#O 
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To apply this result, w:: take A to be the coefficient matrix in (A5), p = hi, and x = (wi, rj>'. 
The residual vector q then satisfies, 

which, by means of the estimates (A6), gives' llqll= O(E). Hence, 

A j - A f =  O(E), j = 2 , .  . . , N + M  

Corresponding estimates of the perturbed eigenvectors follow from 

Theorem 2 (Ibid, p. 142) 

For a Hermitian matrix A with eigenvalues {pi}  and corresponding eigenvectors {vi}, let 
Vj,,(k 2 j )  denote the linear space spanned by vj, v ~ + ~ ,  . . . , vk. If 

j s i l k  
2 d > 0 otherwise 

where p, q and x are as in Theorem 1, then 

Consider an eigenvalue Ai of the unperturbed system of multiplicity ( k  - j + 1) (so that 
A. I = A. 1+1  = - - - = hk, k 2j). The conditions of the theorem can be met by choosing d = 
1/2 min 14 -hi( provided that E is sufficiently small. For each i, j 5 i s k, take x = (wi, ri)T so 

that llqll= O(E). We can therefore construct a linearly independent set of vectors (wi, the 
points at which the minimum in (A10) is achieved, such that 

xi z hi 

(?) ri = ?)+ ri O ( E ) .  

This result enables us to calculate the projection of the solution onto the linear space 
spanned by the eigenvectors (wi, ?i)T, i = 3,4, . . . , N + M :  

since, for j 2 3 ,  lhf Iz$ min 

We now refine the estimate for A$ and the corresponding eigenvector. To this end we 
apply the theorems with the test vectorx = (EW, P; + Er)' and p = h2 = 0 where (w, r)' constitutes 
any solution of the equations 

Kw+Cr=-c 

JA, )>O when E is sufficiently small. 
3 s i s N + M  

cTw = 0, 
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where c = I'P: (see (26) and (A6)); note that c can also be expressed as c = CEPE since CPE = 0. 
Note that we may take 

Now 

so that Ilq(l= O(E'), giving A; = O(E') and 

where p ( p  = 1 + O(E)) is a normalizing constant. 
The solution of (A5) may now be expressed in the form 

where yH is an arbitrary constant and 

YE = (&2/h;){(f,, W) + k,, r))+ 
is a fixed constant whose magnitude is, in general, O(1). 

Finally, we rederive (27) in a more formal way: 

(1) Define I' via C, = C + &I' (see (A6)) 
(2) Form CZU, = 0 = C w ,  + d'w, 
(3) Use CP,=O to form 

C,P,= EI'P,=&c where c has elements O(1) and 
PTCP, = 0 = E P ~ W ,  = &ewe, which is (27) in 
the text. 
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